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1. Introduction

A workshop on ensemble forecasting in the short to
medium ranges (0–14 days forecast lead time) was held
at the National Center for Atmospheric Research in Boul-
der, Colorado, 9–11 September 1999. Approximately 45
people attended this workshop, with approximately a
quarter joining us from outside the United States. The
purpose of the workshop was to discuss the current
state of knowledge of ensemble forecasting, to define
the most important research problems for the next few
years, and to seek common evaluation methods and
tools. The sessions in this workshop were organized
around three general topics: 1) use of ensemble fore-
casts for data assimilation, 2) issues related to model

error in ensemble forecasts, and 3) the use, utility, and
interpretation of ensemble forecasts.

In this meeting summary, we first provide some
background on ensemble forecasting. We also com-
pare the current state of our knowledge to what was
known at the last U.S. ensemble forecasting workshop
in 1994 (Brooks et al. 1995). Next, we provide sum-
maries and recommendations from each of the three
workshop sessions and end with a brief conclusion.

2. Background and recent progress in
ensemble forecasting

Ensemble forecasting (EF) has been embraced as
a practical way of estimating the uncertainty of a
weather forecast. Since Lorenz (1963, 1969) it has
been recognized that perfect numerical weather
forecasts will always be unattainable; even the
smallest of errors in the initial conditions will grow
inexorably, eventually rendering any single deter-
ministic forecast useless. Rather than pinning
unrealistic hopes upon the accuracy of a single nu-
merical forecast, EF adopts an alternative approach:
generate multiple, individual numerical forecasts
from different initial conditions and/or different nu-
merical model configurations (Leith 1974). Probabi-
listic forecasts of the weather may then be generated
from the relative frequencies of events in the en-
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semble. Medium-range EFs have been produced op-
erationally in the United States and Europe since late
1992 (Toth and Kalnay 1993, 1997; Palmer et al.
1993; Molteni et al. 1996). At the Canadian Meteo-
rological Centre (CMC), EFs have been produced
operationally since January 1996 (Houtekamer et al.
1996a,b; Houtekamer and Lefaivre 1997). Each of the
centers produces the ensembles using different fore-
cast models and different ensemble construction tech-
niques. EFs are also now produced operationally at
several other centers around the world as well (e.g.,
Rennick 1995; Kobayashi et al. 1996).

Encouraging results from medium-range EFs mo-
tivated the previous workshop on ensemble forecast-
ing, which focused on the potential utility of short-range
ensemble forecasts (SREFs; Brooks et al. 1995). It was
believed that SREFs might provide useful information
for short-range forecast problems such as severe
storms forecasting (Brooks et al. 1992) and precipita-
tion forecasting. At that workshop, issues of how to
generate ensemble forecasts were considered, as well
as considerations of model error and ways of dealing
with the data overload of the multiple weather fore-
casts. It was recognized that the problems for gener-
ating useful SREFs were potentially much more
difficult than for medium-range EFs; many systematic
errors corrupt our current mesoscale numerical
weather forecasts, owing to insufficient model reso-
lution, use of physical parameterizations, insufficient
knowledge of the land surface condition, and other
such problems. As a result of this workshop, the Na-
tional Centers for Environmental Prediction (NCEP)
launched a pilot project to generate a small ensemble
of SREFs using a reduced-resolution version of the Eta
model (Black 1994) and the Regional Spectral Model
(Juang and Kanamitsu 1994). These EFs were initial-
ized with both interpolated bred initial conditions from
NCEP’s medium-range EF and from a variety of in-
house analyses.

Since the 1994 workshop much has been learned
about EFs and SREFs. Results from the pilot SREF
project were described in Hamill and Colucci (1997,
1998) and Stensrud et al. (1999). Based on these and
other recent results, NCEP plans to implement a
semioperational SREF starting in 2000. Other work on
EFs since the 1994 workshop includes, for example,
case studies of intense cyclogenesis (Du et al. 1997;
Leslie and Speer 1998; Hamill 1998; Mullen et al.
1999) and blocking (Colucci and Baumhefner 1998);
the study of the performance of EFs, for precipitation
forecasting (Hamill and Colucci 1997, 1998; Du et al.

1997; Eckel and Walters 1998; Buizza et al. 1999a;
Mullen and Buizza 2000); a study of the benefit of
postprocessing EFs (Eckel and Walters 1998); a syn-
optic evaluation of the NCEP medium-range ensemble
(Toth et al. 1997); exploration of issues related to the
choice of perturbation methodologies using perfect
models (Houtekamer and Derome 1995; Anderson
1997; Hamill et al. 2000); a comparison of the rela-
tive effects of model and initial condition errors in the
presence of convection (Stensrud et al. 2000); effects
of increasing the ensemble size (Buizza and Palmer
1998) and the resolution of member forecasts (Buizza
et al. 1998); the effects of domain size and lateral
boundaries (Du and Tracton 1999); methods for evalu-
ating EFs (Anderson 1996; Smith and Gilmour
1999; Wilson et al. 1999); examinations of spread-skill
relationships in ensembles (Buizza 1997; Whitaker
and Loughe 1998); and examinations of the potential
utility of ensembles from multiple models and/or mul-
tiple initial conditions (Krishnamurti et al.1999;
Harrison et al. 1999; Evans et al. 2000; Hou et al. 2000,
Ziehmann 2000; Richardson 2000b, manuscript sub-
mitted to Quart. J. Roy. Meteor. Soc.). Ehrendorfer
(1997) and Palmer (2000) provide nice reviews of EF
concepts.

Research in the use of ensemble forecasts for im-
proving data assimilation has also blossomed. A cru-
cial part of any data assimilation methodology is the
specification of error statistics for the first-guess or
“background” forecast. These statistics determine how
much to weight the background relative to the
observations and how to spread the influence of the
observations away from the actual observation
location. The accuracy of analyses and subsequent
forecasts can potentially be improved greatly if
background error covariances are better estimated.
Older data assimilation methods such as optimum in-
terpolation (Gandin 1963; Schlatter 1975; Lorenc
1981) and three-dimensional variational analysis
(3D-Var; Lorenc 1986; Parrish and Derber 1992) use
simple statistics for describing the background errors,
which may not vary in time or space. Recent results
suggest that it may be possible to generate more
accurate spatially and temporally varying background
error statistics from a set of EFs. Articles by Evensen
(1994), Houtekamer and Mitchell (1998), Burgers
et al. (1998), van Leeuwen (1999), Mitchell and
Houtekamer (2000), and Hamill and Snyder (2000)
discuss the use of an ensemble of forecasts using a
technique called the “ensemble Kalman Filter”
(EnKF). The EnKF is a special case of the nonlinear
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filter discussed by Anderson and Anderson (1999).
Also, the use of ensembles in a reduced-rank extended
Kalman filter is discussed by Fisher and Courtier
(1995) and Fisher (1998), the use of bred mode infor-
mation for improving analyses is discussed in Pu et al.
(1997), and the use of ensemble forecast statistics for
specifying improved stationary background error sta-
tistics to four-dimensional variational analysis
(4D-Var) is described in Buizza and Palmer (1999).

Despite many advances in our understanding of
how to use and construct ensembles, questions abound.
We judged the three most important issues to be
1) how or how best to use ensemble information to im-
prove data assimilation strategies, 2) how to address
model errors in EFs, and 3) how to appropriately use
and interpret the voluminous information from
ensembles.

The workshop was organized into three sessions,
each dealing with one of these issues. In each session,
there was a set of invited, longer talks, a larger num-
ber of shorter presentations, extensive discussion, and
a final working group tasked with summarizing the
current state of the art and recommending areas requir-
ing further research. A report from each session
follows.

3. Session 1: Ensemble forecasting and
data assimilation

A common theme ran through the presentation and
discussion in this session: ensemble forecasting and
data assimilation are two aspects of the same prob-
lem, namely, describing the evolution of the probabil-
ity distribution for the atmospheric state given
available observations and a forecast model. The pre-
sentations here reinforced the supposition that prop-
erly constructed ensembles may generate probabilistic
information in the very short range that may be used
to estimate background error statistics for data assimi-
lation (DA) schemes, consequently improving the ac-
curacy of analyses. Similarly, the generation of an
ensemble of initial conditions for purposes of data
assimilation should incorporate probabilistic informa-
tion on analysis errors provided by the data assimila-
tion scheme, which are affected by dynamically
constrained errors and model errors (from the back-
ground) and by random errors (from assimilating im-
perfect observations). This general approach to the
construction of ensemble initial conditions differs
from those used in present operational ensemble sys-

tems at the European Centre for Medium-Range
Weather Forecasts and NCEP. There, the ensemble of
initial conditions are designed for forecast applications
and project upon features that will grow or have grown
rapidly, respectively.

a. Summary of presentations
An overview of the use of ensembles in data as-

similation, with emphasis on the EnKF, was presented
by P. Houtekamer (CMC). The EnKF is related to the
Kalman filter (Kalman 1960), which provides the op-
timal estimate of the state of a linear dynamical sys-
tem under the assumption that observational and
background error statistics are precisely known and are
Gaussian. The EnKF, however, differs from the
Kalman filter in that the error covariance is estimated
from an ensemble of short-range, nonlinear forecasts;
at analysis times, each member is then updated in such
a way that the ensemble perturbations approximate a
random sample from the analysis error distribution.
The effectiveness of the EnKF, even for small en-
sembles (~10 to 100 members) has been demonstrated
in simple models, but it remains untested in opera-
tional numerical weather prediction (NWP).

Houtekamer discussed three practical difficulties
related to operational implementation of the EnKF:

1) Rank deficiency. Since feasible ensembles in NWP
are composed of far fewer members than the de-
grees of freedom in the forecast model, the en-
semble perturbations cannot span the space of
model solutions, and their sample covariance ma-
trix is rank deficient. The resulting analysis corrects
the background only in the subspace spanned by
the ensemble members.

2) Sampling errors. Covariance estimates from a fi-
nite sample are subject to sampling errors that de-
crease only slowly with the size n of the ensemble
(as n−1/2; Casella and Berger 1990). Characteristic
sampling errors include spurious correlations
between widely separated locations and the over-
estimation of the leading eigenvalues of the cova-
riance matrix.

3) Model error. Estimating background covariances
solely from an ensemble of forecasts generated by
the same imperfect model ignores the contribution
of the error in the forecast model to the uncertainty
of the background. Since a key source of model
error is the omission or parameterization of unre-
solved scales, this problem can be expected to be
worst at the smallest resolved scales and to lead to
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a systematic underestimation of uncertainty at the
small scales by the ensemble.

Houtekamer also emphasized that the use of the full
nonlinear forecast model and forward operators in the
covariance calculations both simplifies the scheme and
appears to make it more robust, even though the
Kalman filter is formally applicable only for linear
dynamics and forward operators.

Presumably, however, there is a point at which a
system’s dynamics become sufficiently nonlinear, and
the distributions of interest sufficiently non-Gaussian,
that a more general approach is required. J. Anderson
described how one might build an EF/DA scheme in
this regime (Anderson and Anderson 1999). As it turns
out, the framework remains similar to the EnKF. An
ensemble of short-term forecasts is used to estimate
the prior distribution of the atmospheric state; when
observations are available, this estimated distribution
is updated given the new observations by Bayes’ rule.
Finally, a new ensemble of initial conditions is gener-
ated as a random sample from the updated distribu-
tion. Unlike the EnKF, where all distributions are
assumed Gaussian and the ensemble simply provides
an estimate of the background covariances, the
distributions in this general case are approximated
through nonparametric density-estimation techniques
(Silverman 1986), which make minimal assumptions
on the form of the distribution. Another presentation
by M. Berliner further discussed the statistical con-
cepts behind this approach.

Shorter presentations were made on ensemble
Kalman filtering approaches (T. Hamill, J. Whitaker,
C. Bishop, J. Hansen), on the improvement of 3D-Var
using information from bred modes (D. Barker), on
singular vectors (R. Gelaro, J. Ahlquist), and on the
limits of linearity assumptions in the construction of
ensemble perturbations (I. Gilmour).

b. Working group on ensemble forecasting and
data assimilation
The working group began with a discussion of the

fundamental problems posed by schemes that combine
EF and DA. A successful ensemble-based strategy
should provide accurate estimates of background er-
ror statistics despite imperfect forecast models, despite
the imperfect knowledge of the errors in the observa-
tions and their relation to the forecast variables, and
despite the requirement to use an ensemble whose size
is small compared to the degrees of freedom in the
forecast model. Opinions varied widely on the feasi-

bility of this enterprise and on which aspects were, in
fact, the most problematic. In the end, there was agree-
ment that experiments in simple models had suggested
that schemes combining EF and DA were both feasible
and useful, but that success of such schemes in more
realistic environments such as in operational NWP re-
mained uncertain.

The working group identified three areas where
further research could pave the way for tests of such
schemes with operational NWP models.

1) Comparing sampling techniques for estimating the
background covariance matrix. Two main ap-
proaches have been proposed. The first directly ap-
plies Monte Carlo techniques to generate an
ensemble that is (approximately) a random sample
from the distribution at the analysis time, that is,
the EnKF. The second approach seeks to obtain
more accurate estimates with fewer members by
populating the ensemble with those initial pertur-
bations that will evolve into the leading eigenvec-
tors of the background error covariance matrix
(Ehrendorfer and Tribbia 1997; Barkmeijer et al.
1998; for a related method, see Pham et al. 1998).
Both of these techniques use the same information
(estimates of the observation error covariances and
a previous ensemble-based estimate of the back-
ground error covariances). Experimentation is still
required to determine the relative merits of each
approach.

2) Dealing with small sample sizes. As discussed by
Houtekamer in his presentation, small sample sizes
give rise to many of the known difficulties of
ensemble-based data assimilation. Several tech-
niques for dealing with many of these difficulties
are known. For example, one can ameliorate both
rank deficiency and spurious long-range correla-
tions by “localizing” the covariances, either implic-
itly by excluding distant observations when
calculating the analysis at a point, or explicitly by
multiplying the covariances by a decreasing func-
tion of distance. However, the relative importance
of the known difficulties and the efficacy of these
proposed solutions is unclear. There is the poten-
tial for further problems, such as a lack of balance
in the ensemble perturbations, to arise as ensemble-
based assimilation schemes are tested in more com-
plex models.

3) Evaluating different methods. At present, several
methods for EF/DA strategies have been proposed
and tested in simple models. An important next
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step will be to compare these methods. While the
final test of any assimilation scheme is clearly
whether it can improve operational analyses and
forecasts, the consensus that emerged was that
comparisons should begin with simpler models and
evaluation techniques that are already available
(see section 5). Further, more refined metrics, such
as those that might facilitate the evaluation of dis-
tributions in several dimensions, should be devel-
oped. Finally, comparisons would be facilitated by
the availability within the community of a stan-
dardized hierarchy of common models in which to
test proposed methods. To facilitate such compari-
sons, the working group recommended that the
community should agree upon, and disseminate, a
hierarchy of models for testing ensemble-based
DA schemes. This hierarchy should include at the
least a low-order model (such as that of Lorenz
1965), a quasigeostrophic or other balanced model
having many degrees of freedom, and a simplified
primitive equation model. In addition, alternative
versions of each model should be available, so that
methods can be compared in the case of imperfect
models as well. These alternative “imperfect” ver-
sions may include specified stochastic forcings or
be run at substantially different resolution.

Data assimilation working group participants were
J. Anderson, C. Bishop, R. Buizza, L. Fillion, R. Gelaro,
I. Gilmour, J. Hansen, T. Hamill, P. Houtekamer,
J. Whitaker, and C. Snyder (chair).

4. Session 2: Model errors and
ensemble forecasts

When ensemble forecasting was first implemented
at NCEP (Toth and Kalnay 1993, 1997) and ECMWF
(Palmer et al. 1993; Molteni et al. 1996), the approach
was to assess forecast uncertainty related to growth of
errors in the initial conditions due to large-scale cha-
otic dynamics. However, forecast uncertainty also
arises because imperfect numerical models are used
to predict the behavior of the atmosphere. Ensemble
forecast systems that simulate uncertainties due to both
initial condition and model errors (e.g., Houtekamer
et al. 1996a,b; Houtekamer and Lefaivre 1997) may
improve the ensemble, providing a more realistic
spread of forecast solutions. Hence, there has been
much recent interest in designing new techniques for
addressing model uncertainty.

Part of model error can be classified as systematic
and another part as random or stochastic. Systematic
errors are those that can be reproduced if the model is
run many times over similar cases; these errors are
commonly referred to as “model bias.” Systematic
errors are typically a consequence of model formation,
such as inadequate parameterization of certain subgrid
scale processes. In principle, if systematic errors are
known, model forecasts can be corrected (e.g., Dee and
Da Silva 1998); in practice, many of the errors may
be conditional, dependent upon the occurrence of con-
vection or other processes, making them hard to esti-
mate with finite samples.

Stochastic errors are not reproducible; they arise
at each integration time step due to numerical
inaccuracies, the finite truncation at some arbitrary
scale from the grid spacing, and other inaccuracies that
act randomly. Stochastic errors, just like the initial er-
rors, turn in time into the direction of fastest growing
perturbation directions, increasing errors associated
with atmospheric instabilities (Toth and Kalnay
1997).

a. Summary of presentations
In recent years, different groups developed various

methods to account for model related uncertainty in
ensemble forecasting. In his presentation, P. Houtekamer
described the technique used at the CMC (Houtekamer
et al. 1996a,b; Houtekamer and Lefaivre 1997),
whereby several versions of an NWP model are devel-
oped and used in parallel with each other. These ver-
sions possibly differ from each other in horizontal
resolution, treatment of orography, convection, radia-
tion parameterization, etc. For each ensemble model
integration started with unique and slightly different
initial conditions, a different model version is used.
The goal is to capture systematic differences or errors
in model forecasts, though, as Houtekamer pointed
out, the real atmospheric solution still differs more
from the ensemble members than the individual fore-
casts differ from each other.

Next, R. Buizza described the approach recently
implemented at ECMWF (Buizza et al. 1999b). There,
after each time step within a model integration, sto-
chastic multiplicative noise (described below) is ap-
plied to the net parameterized tendencies using a
number chosen randomly in the [0.5, 1.5] interval. The
goal is to represent stochastic errors in the parameter-
ization of subgrid-scale processes.

P. Sardeshmukh emphasized that all current
physical parameterization schemes return only the ex-
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pected value of the subgrid-scale feedback on the re-
solved tendencies, not the full distribution (Fritsch
et al. 1998). This can contribute to an error in the en-
semble mean as well as the forecast spread. Stochastic
noise can be introduced into ensemble param-
eterizations to sample the distribution of subgrid-scale
feedbacks. This noise is typically introduced as
additive noise or multiplicative noise. Additive noise
is a separate additional noise term in the prognostic
equations, while multiplicative noise is noise that is
multiplied with an existing time tendency term(s).
Special care must be exercised when using stochastic
noise, especially multiplicative noise, as its use may
strongly change the ensemble mean (Sardeshmukh
et al. 2000).

L. Smith discussed whether the stated goals of en-
semble forecasting are appropriate ones, given theo-
retical considerations about model errors (Smith
1999). He argued that because we do not and will
never have a perfect model of the atmosphere, it is im-
possible to design a reliable, or “accountable” fore-
cast system. Even if the initial uncertainty could be
perfectly known and sampled in a statistical sense
(which is not the case), without a perfect model, it is
impossible to carry forward in time the initial uncer-
tainty in a perfectly consistent manner. Smith then
proposed an alternative criterion for evaluating the
usefulness of ensembles: ensuring that the ensemble
is constructed in such a manner that at least one mem-
ber follows (or “shadows”) the evolution of the real
atmosphere (Gilmour and Smith 1997). A lively dis-
cussion followed as to whether the enterprise of en-
semble forecasting truly was in the dire straits
suggested by the talk.

Shorter presentations were made on a variety of
topics: use of different convective parameterizations
in SREFs (D. Stensrud), use of ensembles for hurri-
cane track prediction (M. Ramamurthy), operational
experimentation at the National Centers for Environ-
mental Prediction (J. Du and I. Szunyogh), and
multimodel EFs (C. Ziehmann and G. Pellerin).

b. Working group on model errors
Discussion started with the question, what is the

main problem caused by the use of imperfect models
in ensemble forecasting? Is it that the overall spread
of the ensembles is too small (presumably because
stochastic model errors are not accounted for), or is it
that the spread in general would be adequate but cer-
tain parts of the atmospheric attractor are not covered
by the model due to systematic errors? What are the

relative contributions of each? No clear answers
emerged to these questions. This underscores the need
for more quantitative studies analyzing the role of
model errors.

O. Talagrand suggested that 4D-Var offers a tool
for assessing the role of model errors in short-range
forecasts. The inability of the model to properly fit
observational data within the range of observational
errors (i.e., the extent of the misfit) can be a direct mea-
sure of model errors. Another obvious measure is a
comparison between the spread of an ensemble and the
ensemble mean forecast error. Ideally, these two should
be similar. The deficiency in spread may thus be used as
a measure of the extent of model-related uncertainties.
The extent of the problem can also be diagnosed using
rank histograms (also known as “Talagrand diagrams;”
Anderson 1996; Hamill and Colucci 1997; Talagrand
et al. 1997) and their extension to multivariate domains
by the minimal spanning tree method (Smith 1999).

Next, the theoretical issues previously raised by
L. Smith were considered. Participants agreed that de-
spite reservations about the ability of operational en-
sembles to meet strict theoretical measures of
consistency, EFs still can provide valuable probabi-
listic information. Whatever method(s) can further
contribute to the practical goal of improving probabi-
listic forecasts is worthy of consideration, including
statistical postprocessing.

The relative merits of the CMC and ECMWF ap-
proaches to model uncertainty were discussed next.
Each approach was judged useful, but when used in-
dependently, they were noted to be able to simulate
only systematic or stochastic errors, but not both.
Some hybrid of the different methods that can address
both issues is clearly desirable. This is an area where
further research is strongly recommended.

Because different forecast systems have different
biases, a multimodel, multianalysis ensemble may
have appeal (e.g., Harrison et al. 1999; Evans et al.
2000; Hou et al. 2000; Richardson 2000b, manuscript
submitted to Quart. J. Roy. Meteor. Soc.). Here, per-
turbations may be centered about different control
forecasts and/or use different forecast models. A sim-
pler approach is to form a smaller ensemble from dif-
ferent control forecasts (Krishnamurti et al. 1999;
Ziehmann 2000). However, the number of control
forecasts that can be combined is limited, and the pre-
diction of rare events from a small ensemble of con-
trol forecasts is especially problematic (the rarer the
event, the more ensemble members needed to accu-
rately assess the probability of that event). The group
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agreed that combining ensembles generated operation-
ally at different centers, preferably after their bias have
been removed, shows promise as an approach to en-
semble forecasting in the short term.

The closing discussion of the working group fo-
cused on a question raised by Z. Toth. In our efforts
to ameliorate the problem related to accounting for
model uncertainties, shall we try to build, maintain,
and develop a host of models that can work well in
different situations, ensuring that at least some solu-
tions may have a chance of verifying well? Or, alter-
natively, shall we attempt to build one model that can
possibly encompass all model versions by randomly
varying the structure, parameters, and/or stochastic
noise within the physics packages? In other words,
shall we try to maintain different model versions that
each work best under various conditions, or instead,
try to build one model that is inclusive of all versions?
No consensus was developed, but it was noted that
within the United States, the current development of
a single regional forecast modeling system (Dudhia
et al. 1998) may offer a unique opportunity for the
modeling community to address the issue of model un-
certainties within the framework of a single model.

Participants at the model errors working group
were J. Ahlquist, J. Du, D. Orrell, G. Pellerin, L. Smith,
I. Szunyogh, O. Talagrand, and Z. Toth (chair).

5. Session 3: Use, utility, and
interpretation of ensemble forecasts

a. Summary of presentations
First, O. Talagrand provided an overview of the

verification of EFs. Ideally, a probabilistic prediction
ought to have high reliability (i.e., exhibit low condi-
tional bias for each issued forecast probability) and
high resolution (ability of different forecasts to distin-
guish between different events; if the model is reliable,
resolution is related to sharpness). Because qualities
of probability distributions such as reliability are be-
ing evaluated, it is impossible to objectively assess the
quality of an individual ensemble forecast; hence, EF
systems must be verified over many cases. Talagrand
explained how common scoring metrics (Brier Score,
Ranked Probability Score, Relative Operating Char-
acteristics curves, rank histograms, etc.) are contami-
nated by at least three sources of noise: improper
estimates of probabilities from small-sized ensembles,
insufficient variety and number of cases in the fore-
cast evaluation, and imperfect observations.

D. Richardson then discussed the potential eco-
nomic value of EFs (Richardson 2000a). Proper evalu-
ation of the benefit of a forecast system to a particular
user should involve not only the intrinsic skill of the
forecasts, but also knowledge of the weather-
sensitivity and decision-making process of the end
user. Reliance on skill measures alone may give a
misleading impression of forecast value. To illustrate
the concept, he considered the impact of ensemble size
on forecast value using a simple decision model
(Murphy 1994; Katz and Murphy 1997) and output
from the ECMWF Ensemble Prediction System (EPS).
Probability forecasts derived from the EPS have
greater benefit than a deterministic forecast produced
by the same model, and for many users they can have
more value than a shorter-range deterministic forecast
by the same model or a deterministic forecast from a
higher resolution model. The additional information
in the EPS, which reflects only the uncertainty in the
initial conditions, provides a benefit to users equiva-
lent to many years development of the forecast model
and assimilation system. While the difference in skill
between 10 and 50 members appears relatively small,
the larger ensemble size can yield substantial benefit
to a range of users. It also appears that an increase in
ensemble size to beyond 51 (the current size for the
EPS) can provide additional value, especially for ex-
treme (and unlikely) events.

H. Brooks closed the invited presentations with a
discussion of the problems in designing ensemble fore-
casts for mesoscale weather prediction. Brooks started
by noting that computing power has now reached the
point where it is technologically feasible to run SREFs
with mesoscale models (grid spacing of 30 km or less)
in real time on local workstations. The construction
of a mesoscale EF system with a limited-area model
brings with it several basic questions: how do we even
create such an ensemble? What can (and should) we
infer about the weather from such an ensemble? How
do we provide the output in a timely manner so that
decision makers and forecasters can use it? And how
do we evaluate the ensemble? The answers to these
questions may not be the same as they are for longer-
range ensembles, where the lead time and response
time is greater. Many fields for which predictive in-
formation is desired are poorly observed at the appro-
priate scales; thus, the errors in mesoscale features can
be close to saturated in initial analyses, and verifica-
tion of them is a very uncertain proposition. Moreover,
mesoscale weather phenomena (e.g., severe thunder-
storms) can be strongly nonlinear and intermittent:
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they quickly appear, amplify, then dissipate within the
forecast period. Finally, the model error strongly de-
pends on the phenomenon being forecast and likely
becomes more important than initial data errors after
a very short time (tens of minutes to a few hours) into
the forecast.

Shorter presentations were given on SREFs in the
United States (S. Tracton), SREFs in Europe (K.
Mylne), postprocessing of EFs (F. Eckel), and the eco-
nomic value of EFs (Z. Toth).

b. Working group on the use and interpretation of
ensemble forecasts
The group first discussed the need for researchers,

forecasters, and end users to understand the benefits
and limitations of ensemble forecasting. In particular,
numerical experimentation suggests there may be a
time limit to the ultimate predictability of the atmo-
sphere (Lorenz 1969, 1982). This limit is presumed to
vary with the forecast variable in question (e.g., 500-hPa
geopotential heights are predictable for longer than
cloud cover), the scale of the phenomenon (e.g., Van den
Dool and Saha 1990), and the spatial and temporal aver-
aging that are performed (Islam et al. 1993; Vannitsem
and Nicolis 1998). Ensemble techniques probably can-
not change this limit but can, through ensemble aver-
aging, improved initial conditions, and estimation of
case-dependent forecast uncertainty, bring the level of
forecast performance somewhat closer to this limit.

Predictability limits are uncertain because they can
only be estimated from imperfect numerical models.
These estimates are strongly dependent on the disper-
sion properties of the chosen model and on how close
the modeled variance is to the observed variance. If a
model lacks variance for a particular scale of motion
or cannot even resolve it, energy cascades across the
scales will be treated improperly, and the predictabil-
ity estimate can be expected to be unduly optimistic.
In the future, it would be particularly useful to perform
new predictability experiments using models with
smaller grid spacings so a larger part of the spectrum
of atmospheric motions and their interactions can be
well resolved. Further research into how predictabil-
ity estimates change with the scale of the phenomenon
is also suggested.

Verification and diagnosis of ensemble forecasts
were next discussed. A single verification score is
generally inadequate for evaluating all of the desired
information about the performance of an analysis/
forecast. Each measure provides unique information
on system performance. For that reason, a suite of veri-

fication measures, appropriate for the evaluation of
probabilistic forecasts, should be used.

The group agreed for the need to establish a gen-
erally accepted, standardized suite of verification
scores and diagrams to evaluate ensemble systems.
The group’s consensus was that, at a minimum, the
following metrics should be used.

1) Probabilistic skill score measures such as the Brier
Score, Brier Skill Score, Ranked Probability Score,
and/or Ranked Probability Skill Score (Wilks
1995). These scores can provide an overall, single-
number metric for judging the quality of probabi-
listic forecasts. Their very simplicity also prohibits
them from being very informative about the nature
of probabilistic forecast errors (Murphy and
Winkler 1987; Murphy 1991). However, the Brier
score can be decomposed into reliability, resolu-
tion, and uncertainty terms (Murphy 1973). A
similar decomposition for a continuous ranked prob-
ability score was proposed recently (Hersbach 2000).

2) Reliability diagrams (Wilks 1995), plotted together
with a decomposition of the Brier score and infor-
mation on the distribution of forecasts issued (the
sharpness). Reliability diagrams can provide infor-
mation on conditional biases of ensemble forecasts.
However, as noted in Wilks (1995), they can be
noisy and uninformative unless populated over a
large set of cases. Recently, Hamill (1997) dem-
onstrated a multicategory reliability diagram that
is less sensitive to the number of cases.

3) The Relative Operating Characteristic (ROC)
(Swets 1973; Mason 1982; Stanski et al. 1989;
Atger 1999). The ROC curve graphs probabilities
of incorrect null and alternative hypotheses as each
sorted ensemble member is used as a decision-
making threshold. The ROC curve is based on
stratification by observations; it is independent of
reliability and instead provides a measure of reso-
lution. It is particularly valuable for comparing the
performance of ensemble systems against single
deterministic forecasts at higher resolution, and the
more general resource issue of ensemble size/
configuration versus model resolution. Moreover,
potential economic value for the simple decision
model discussed by Richardson (2000a) is uniquely
determined from ROC curves.

4) Rank histograms (Anderson 1996; Hamill and
Colucci 1997; Talagrand et al. 1997), as well as
their extension to higher dimensions by the mini-
mal spanning tree (Smith 1999). These diagnose
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the ability of the ensemble to sample from the cor-
rect probability distribution. Model bias and under-
or overvariability of the ensemble can detected
from the shape of the rank histogram.

Other evaluative techniques (spread/skill relationships,
cluster analysis, etc.) may prove useful depending on
the research issue in question.

Since the parameters verified should be driven by
the needs of the end users of the forecasts, the group
suggested that ongoing verification efforts begin to
place more emphasis on sensible weather instead of
traditional fields such as the 500-hPa height field.
There should also be a concerted effort to assess per-
formance of ensemble forecasts for rare events and for
high-impact weather (e.g., severe thunderstorms). Of
course, verification assumes that accurate observed
fields are available, which unfortunately is not always
the case for many regions (e.g., over the ocean),
weather features (e.g., clear-air turbulence), and scales
(e.g., meso- and microscale). In fact, the question of how
to verify mesoscale EFs and validate model variability,
in the absence of complete observations and quantitative
estimates of observational/analysis uncertainty, is one
of the most challenging issues facing the community.

Allocation of computational resources is another
important consideration for optimal implementation
of any analysis-forecast system. Ongoing evaluation
will always be required to determine the optimal trade-
off between grid spacing and the number of en-
semble members; this can be expected to change as
computational resources increase. The evaluation
should also include the best ways to deal with model
errors (see section 4).

The research community and forecast users would
benefit from access to both the full ensemble forecast
fields and some quick, useful summary information of
the EFs. The full forecast fields would be useful to
leverage the local forecast offices and universities to
accelerate the development and improvement of en-
semble forecast systems. These users could explore in
full the potential benefits of ensembles and tailor en-
semble products to their particular forecast problem,
and would be provided the necessary initial analyses
and lateral boundary conditions to run finescale,
limited-area mesoscale ensembles on local worksta-
tions. Then again, in view of operational time con-
straints, it is impossible for a forecaster to examine and
mentally synthesize every individual outcome from an
ensemble, so synthesized products are desired in ad-
dition to raw model output. Further research into ef-

fective ways to condense, synthesize, and visualize en-
semble output is suggested.

Closely related to the synthesis of ensemble out-
put is its calibration. It is firmly established that sta-
tistical postprocessing of NWP output can significantly
improve the skill of deterministic forecasts, primarily
through the reduction of biases (e.g., Carter et al.
1989). The calibration of ensemble forecasts presents
greater challenges than that of deterministic forecasts
because the higher moments of the probability distri-
bution may be mis-specified, not just the mean. Recent
results indicate that techniques besides multiple linear
regression can be successfully employed to calibrate en-
semble output (e.g., Zhu et al. 1996; Hamill and Colucci
1998; Eckel and Walters 1998).

Discussion group participants included D.
Baumhefner, T. Eckel, K. Mylne, M. Rennick, D.
Richardson, S. Tracton, C. Ziehmann, and S. Mullen
(chair).

6. Conclusions

Clearly, research on EFs and their use is growing.
Despite the progress, ensemble forecasting is not yet
used to its full potential in this country. We believe
that this is due partly to a long institutional and soci-
etal inertia toward making and using deterministic
rather than probabilistic forecasts, and partly because
ensemble forecasting is still a relatively new endeavor.
This workshop highlighted how far we have come in
the last five years. Five years ago the potential useful-
ness of ensembles in data assimilation was not widely
appreciated. Five years ago we knew model errors
were problematic but had few ideas about how best to
address them in an ensemble. Five years ago our
knowledge of how to interpret ensemble forecasts and
how to use them was minimal. Over the next five
years, our community will be testing coupled en-
semble forecast/data assimilation schemes in realistic
numerical models; we will be researching and testing
ways of addressing model errors and model uncer-
tainty; and we will be looking for more effective ways
to verify and communicate ensemble forecasts.
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